

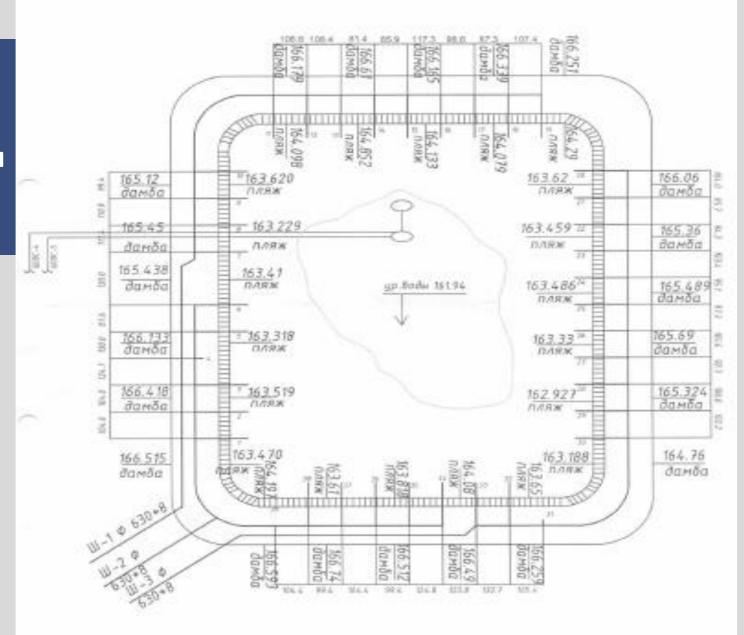
Аналитические исследования отхода «Шлам бокситовый отвальный» на шламонакопителе № 2 АО «Алюминий Казахстана» отчет по выполнению договора № 405 от 11.04.2017 г.

Корпоративный фонд «Центр компетенций по экологическим технологиям»
Ахан Омирбек
К.т.н., Экологический аудитор РК

ЦЕЛЬ РАБОТЫ

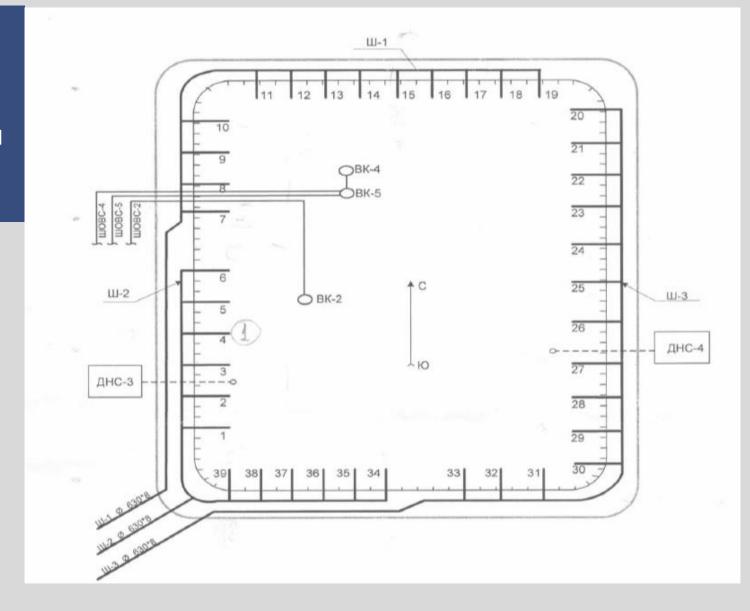
Проведение аналитических исследований отхода «Шлам бокситовый отвальный» на шламонакопителе № 2 АО «Алюминий Казахстана»:

- Определение качественного и количественного состава (определение концентрации благородных и редкоземельных металлов);
- Оценка возможности извлечения из него ценных компонентов;
- Для сокращения площадей, занимаемых шламонакопителем, с последующим возможным их высвобождением и возвращением в сельскохозяйственный оборот,
- Для уменьшения (или ликвидации) рисков для здоровья людей и окружающей среды, исходящих от данного загрязнителя.
- Подбор технологий по его переработке / вторичному применению.

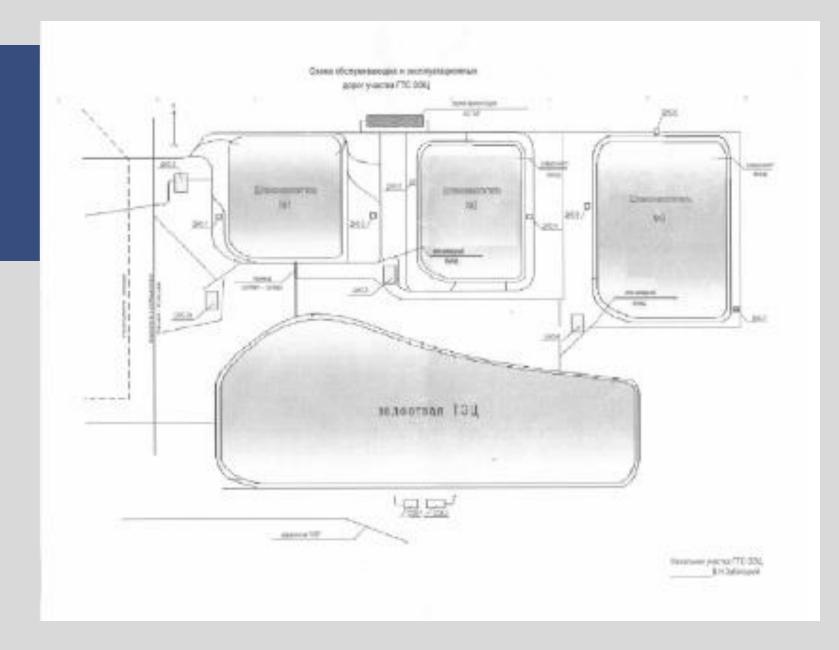


ОБОСНОВАНИЕ РАБОТЫ

- AO «АоК» единственное в РК предприятие, выпускающим глинозем (1,5 млн тонн/год);
- Процент извлечения глинозема ок. 88%;
- В шламе могут оставаться неизвлеченные компоненты;
- Известные способы переработки шлама затратны и превышают ожидаемый эффект от использования шлама.
- В центре внимания должны находиться именно вопросы комплексной переработки, с извлечением наиболее ценных полезных компонентов, а наибольшие усилия должны уделяться извлечению благородных и редкоземельных металлов, имеющих не только высокую стоимость в денежном выражении, но и чрезвычайно важных в плане технического применения.



План съемки карты шламонакопителя №2

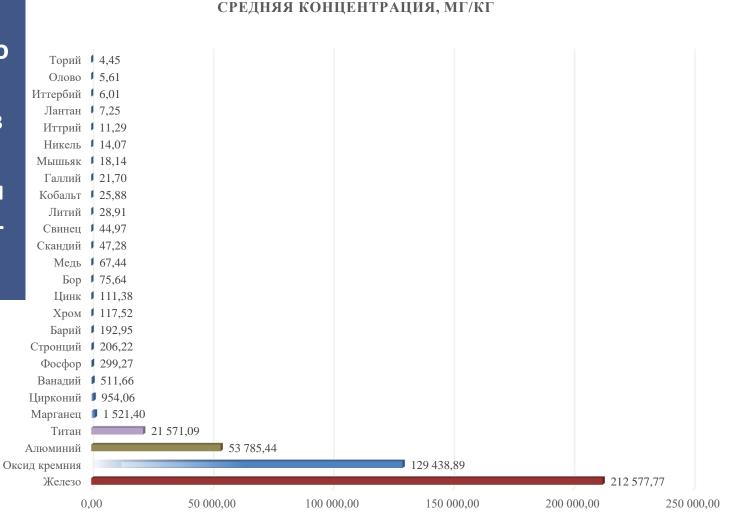


Принципиальная схема шламонакопителя №2

Участок ГТС ЭЭЦ

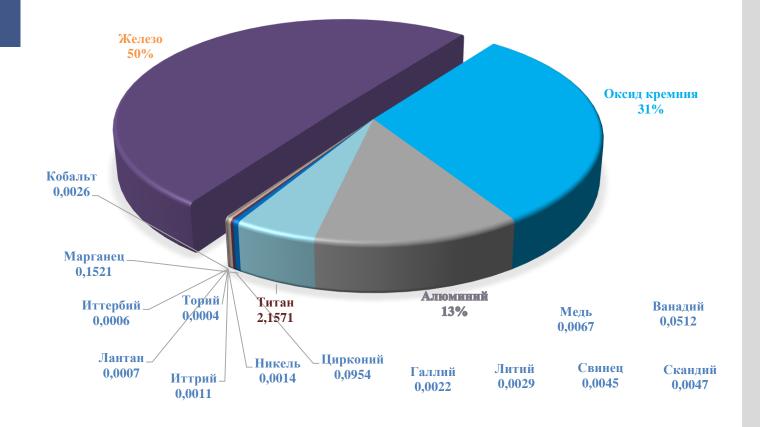
Схема отбора проб шлама из шламонакопителя №2

Отбор проб шлама - согласно ГОСТ 17.4.3.01-83 «Охрана природы. Почвы. Общие требования к отбору проб».


Всего отобрано 18 точечных проб:

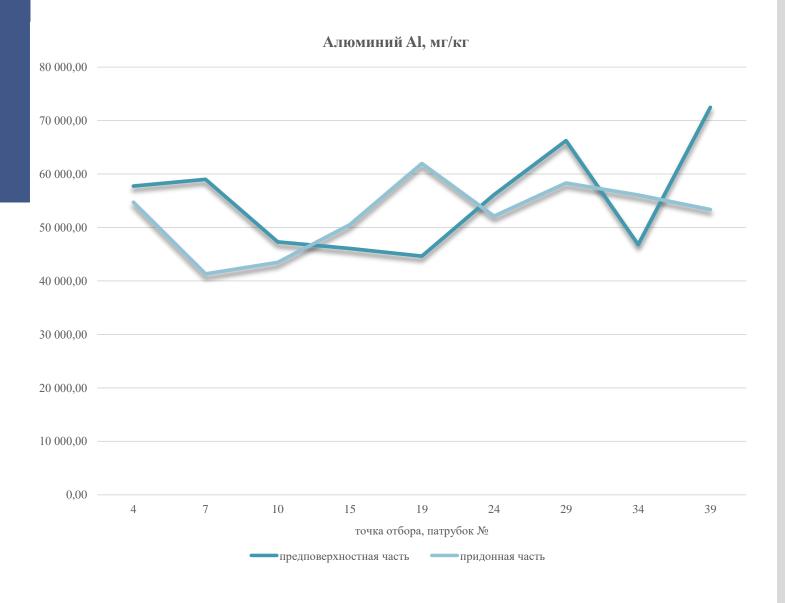
- **Подповерхностная часть** (1,5 метра вглубь в створе шурфа на пляже шламонакопителя, отметка 163,6 м) в точках, расположенных на расстоянии 50 метров от краев дамбы шламонакопителя, напротив патрубков № 4, 7, 10, 15, 19, 24, 29, 34, 39;
- **Придонная часть** (1,5 метра вглубь в створе шурфа на площади нижнего яруса шламонакопителя, накопления 1997 года) в точках, расположенных под патрубками № 4, 7, 10, 15, 19, 24, 29. 34, 39.

Сравнительное содержание наиболее крупных компонентов шлама

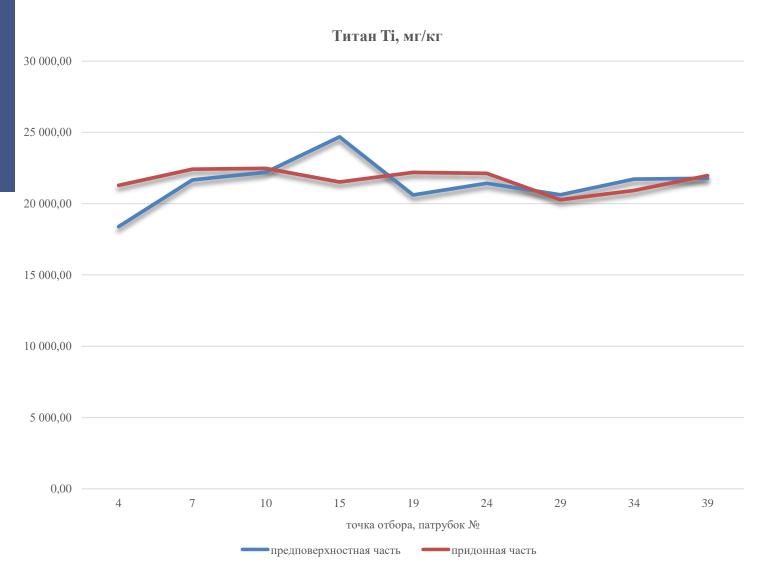

Результаты полуспектрального количественного анализа шлама из придонной части шламонакопителя №2 методом ИСП-АЭС


Процентное содержание основных компонентов шлама

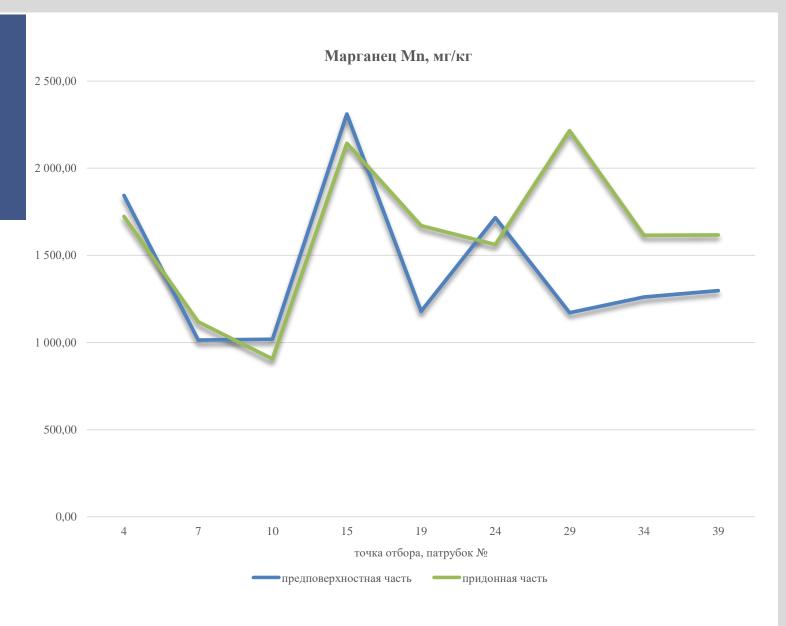
СРЕДНЕЕ СОДЕРЖАНИЕ, %



Колебания содержания железа в разных точках отбора

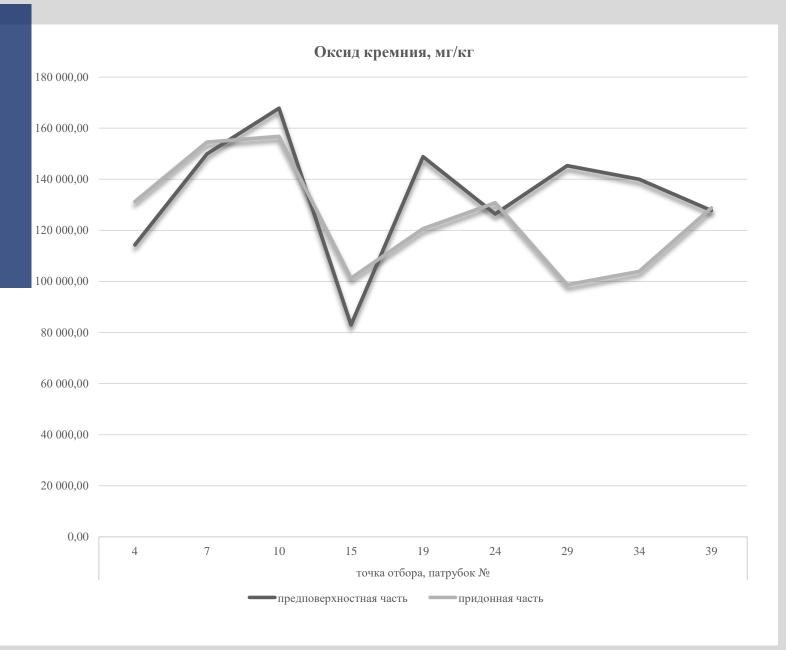


Колебания содержания алюминия в разных точках отбора



Колебания содержания титана в разных точках отбора

Колебания содержания марганца в разных точках отбора



Результаты фотометрического количественного определения диоксида кремния из предповерхностной и придонной частей шламонакопителя №2

Оксид	Место отбора проб									
кремния	Предповерхностная часть									
точка										Среднее
отбора,										значение
патрубок №	4	7	10	15	19	24	29	34	39	
	114	149	167	83	148	126	145	140	127	133
мг/кг	300,00	900,00	800,00	000,00	800,00	400,00	300,00	000,00	800,00	700,00
%	11,43	14,99	16,78	8,30	14,88	12,64	14,53	14,00	12,78	13,37
		Придонная часть								
	131	154	156	101	120	130	98	103	128	125
мг/кг	200,00	500,00	800,00	300,00	600,00	800,00	700,00	900,00	800,00	177,78
%	13,12	15,45	15,68	10,13	12,06	13,08	9,87	10,39	12,88	12,52

Колебания содержания диоксида кремния в разных точках отбора

Остаточное содержание компонентов в шламе

№ п/п	Компоненты	Концент	рация
		мг/кг	%
1	Железо	212 577,77	21,2578
2	Оксид кремния	129 438,89	12,9439
3	Алюминий	53 785,44	5,3785
4	Титан	21 571,09	2,1571
5	Марганец	1 521,40	0,1521
6	Радиоактивные элементы	1 470,17	0,1470
7	Фосфор	299,27	0,0299
	Щелочноземельные металлы	399,17	0,0399
9	Хром	117,52	0,0118
10	Цинк	111,38	0,0111
	Бор	75,64	0,0076
12	Медь	67,44	0,0067
13	Свинец	44,97	0,0045
14	Литий	28,91	0,0029
15	Кобальт	25,88	0,0026
16	Галлий	21,70	0,0022
17	Мышьяк	18,14	0,0018
18	Никель	14,07	0,0014
19	Р3Э	71,83	0,0072

Рекомендации:

Редкоземельные элементы (РЗЭ)

Суммарное содержание РЗЭ составляет 71,83 мг/кг (0,0072 %) - соответствует минимальным промышленным значениям.

Метод извлечения

Рекомендуется использовать в качестве метода добычи РЗЭ осадительные методы извлечения редкоземельных металлов, извлечение которых выгодно и эффективно в экономическом плане при таких количествах ценных компонентов в шламе.

РЗЭ могут извлекаться из шлама суммарно, например, способом гидрохимической переработки, который имеет комплексный характер и сочетает стадии получения щелочных и щелочноземельных продуктов, ионообменного концентрата РЗЭ, гидроксидов алюминия, железа и других переходных металлов.

Рекомендации:

Радиоактивные элементы (РЭ)

Суммарное содержание РЭ составляет 1470,17 мг/кг (0,15 %):

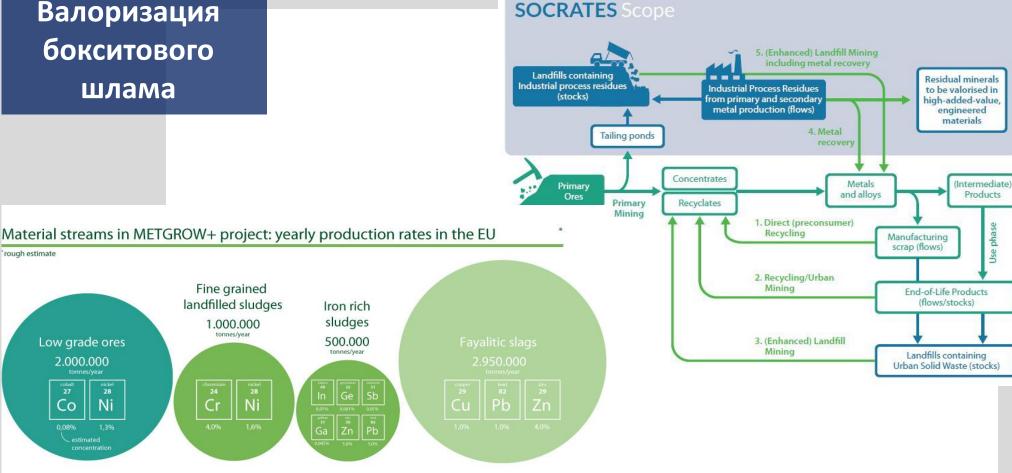
- Торий: стоимость оксида тория ок. 7 500 российских рублей/кг;
- Цирконий: 110 до 583 долл. США/кг металлического циркония;
- Ванадий: 500 тыс. рос.рублей/тн;

Рекомендации:

Щёлочноземельн ые металлы (ЩЗМ)

Суммарное содержание ЩЗМ составляет 399,17 мг/кг (0,04 %):

- Металлический стронций: 12 000 долл. США/тн;
- Металлический барий: 50 долл.США /кг.



Валоризация бокситового шлама

- В настоящее время Европейской комиссией ведется активная работа по созданию новой отрасли: валоризации вновь образующихся и накопленных запасов захороненных промышленных отходов, таких как шахтные отходы, цветной шлак и бокситовый шлам для достижения нулевых отходов;
- Инновационным Фондом Марии Склодовской-Кюри финансируется Европейская учебная сеть по валоризации с нулевыми отходами бокситового шлама (REDMUD).
 REDMUD – это межсекторальное и междисциплинарное сотрудничество ведущих институтов и ученых Евросоюза, которое охватывает всю цепочку создания стоимости, от бокситовых шламов до восстановленных металлов и новых строительных материалов;
- В рамках этой программы действует проект **SOCRATES**, нацеленный на перерабатывающие металлургические процессы, в т.ч. плазмо-, био-, сольво-, электро- и ионометаллургию, которые могут быть интегрированы в экологически чистые (близкие к нулю) отходы валоризации

Валоризация бокситового шлама

Несмотря на то, что проекты программы Horizon 2020 еще не завершены, уже сейчас можно готовиться к применению разрабатываемых технических и технологических решений по валоризации накопленного бокситового шлама и извлечению из него ценных компонентов

Расширенная разработка шламонакопителя

- Европейский консорциум расширенной разработки полигонов **EURELCO** (European Enhanced Landfill Mining Consortium) активно внедряет необходимые технологические, юридические, социальные, экономические, экологические и организационные инновации в отношении расширенной разработки полигонов отходов в контексте перехода к ресурсоэффективной, циркулярной, низкоуглеродной экономике [24], поддерживая проект RESLAG.
- Основная цель проекта заключается в том, чтобы доказать, что есть промышленные сектора, способные эффективно использовать захороненные промышленные отходы, если они должным образом поддерживаются соответствующими технологиями. Проектом RESLAG также ведется поиск и других очень важных экологических выгод, связанных с «активным» использованием шлака в промышленных процессах, вследствие экономии CO₂ (до 970 тыс. тонн / год от приложений CSP и не менее 71 кг / тонну производимой стали из приложений для рекуперации тепла) и устранения негативных воздействий, связанных с добычей полезных ископаемых.

